螺栓拧紧过程中的屈服点,是指螺栓在受到拧紧力矩的作用下,开始发生屈服变形的应力点。当应力达到屈服点时,螺栓的塑性变形量会急剧增加,同时其刚度也会迅速降低。

在实践中,有时会故意让螺栓超过屈服点,这是出于安全和性能的双重考虑:
1. 安全因素:屈服点是材料开始发生塑性变形的应力极限。一旦螺栓达到或超过屈服点,它会发生塑性变形,吸收更多的能量,增强连接的牢固性和安全性。在关键或高应力的应用场景,如飞机、轮船、核电站等,需要确保螺栓的绝对安全,因此常常会选择过屈服拧紧。
2. 性能因素:过屈服拧紧可以提高螺栓的预紧力,使其在承受外部载荷时能更好地保持紧固状态,减少松动或被拔出的风险。此外,这种拧紧方式还可以减少螺栓的蠕变和松弛现象,保持连接的长期稳定性和性能。
但需注意,过屈服点拧紧需要谨慎操作,并确保不超过螺栓的极限承载能力,以避免造成螺栓断裂或过度塑性变形导致性能下降。一般采用转角法进行过屈服点拧紧,通过拧紧一定起始扭矩+角度达到拧紧工艺,通常最终拧紧点会落在屈服点后。此外,使用智能拧紧工具进行全程扭矩和角度的监控也是预防异常问题的重要手段。
JOFR坚丰智能拧紧系统通过技术革新与数据驱动的闭环管理,为行业提供了从工艺优化到质量追溯的完整解决方案。
JOFR坚丰智能电批的拧紧曲线是反映螺栓连接质量的核心数据图谱,通过实时记录扭矩、角度、转速等关键参数的动态变化,为工艺质量监控提供可视化依据。该曲线不仅能判定最终拧紧结果是否达标,更能精准定位装配过程中的异常环节。
在工业自动化领域,阶梯式螺丝供料设备凭借其独特的工作原理展现出显著的技术优势,成为精密装配领域的重要解决方案。
螺栓拧紧过程中的屈服点,是指螺栓在受到拧紧力矩的作用下,开始发生屈服变形的应力点。当应力达到屈服点时,螺栓的塑性变形量会急剧增加,同时其刚度也会迅速降低。
拧紧轴,作为工业制造中的核心工具,发挥着不可或缺的作用。本文将深入探讨拧紧轴的重要性、应用场景以及如何选择合适的拧紧轴,并展望其在工业自动化中的未来发展。
白车身主要由钣金件和骨架件构成,为汽车提供结构强度和刚性,并支撑其他组件的安装。其装配质量至关重要,主要在焊装车间完成。焊装车间采用螺栓连接的原因在于:一方面,螺栓连接过程中零件不易发生热变形;另一方面,随着车身轻量化趋势的发展,一体化铝铸件应用增多,螺栓连接的需求也随之上升。特别是在新能源汽车中,地板、侧围、机舱总成以及四门两盖等十多个工位装配均需使用螺栓连接。
在制造业智能化升级浪潮下,自动化生产是提升效能与品质的核心路径。针对“手持电批是否适用于自动化工位”的疑问,坚丰(JOFR)手持智能电批已通过成熟技术和智能化功能给出明确答案——它不仅能够胜任,更能无缝融入自动化系统,精准高效地完成螺丝拧紧任务。
随着消费者对电子产品数量与质量的双重要求不断攀升,电子产品装配流水线的效率和工艺水平面临前所未有的挑战。其中,打螺丝作为装配流程中的核心环节,其执行效率和准确性对整体生产力具有决定性影响。然而,当前大多数生产线仍依赖手动操作完成这一任务,不仅工作量大,而且容易因工人疲劳导致螺丝漏锁或锁位不准等问题。加之现有电批防错手段单一,效果有限,使得漏打螺丝的缺陷产品难以避免地流入市场,给企业带来重大损失。
在新能源汽车产业的强劲推动下,车灯行业正步入前所未有的高速发展阶段,其产品已超越传统照明功能,成为汽车外观设计的重要元素,不仅保障夜间与恶劣天气下的行车安全,更成为各大车企展现创新与美学追求的舞台。在此背景下,车灯的生产装配工艺正加速向智能化、自动化和灵活化转型。
在汽车总装过程中,螺栓的拧紧质量至关重要。如果扭矩或角度未达到规定要求,车辆在运行时可能会因变载荷而导致螺栓松动或脱落,甚至引发安全隐患。以汽车传动轴为例,其拧紧结果必须精确控制在15Nm±1.2Nm和95°±7'2°的范围内,以确保传动轴的稳定性和安全性。然而,传统的人工拧紧方式存在诸多不足,如拧紧遗漏、扭矩错误、重复拧紧等问题,无法满足现代汽车制造的高标准。